We propose a novel GAN training scheme that can handle any level of labeling in a unified manner. Our scheme introduces a form of artificial labeling that can incorporate manually defined labels, when available, and induce an alignment between them. To define the artificial labels, we exploit the assumption that neural network generators can be trained more easily to map nearby latent vectors to data with semantic similarities, than across separate categories. We use generated data samples and their corresponding artificial conditioning labels to train a classifier. The classifier is then used to self-label real data. To boost the accuracy of the self-labeling, we also use the exponential moving average of the classifier. However, because the classifier might still make mistakes, especially at the beginning of the training, we also refine the labels through self-attention, by using the labeling of real data samples only when the classifier outputs a high classification probability score. We evaluate our approach on CIFAR-10, STL-10 and SVHN, and show that both self-labeling and self-attention consistently improve the quality of generated data. More surprisingly, we find that the proposed scheme can even outperform class-conditional GANs.
翻译:我们提出一个新的GAN培训计划,能够以统一的方式处理任何层次的标签。我们的计划引入了一种人工标签形式,可以将手动定义的标签(如果有的话)纳入其中,并促使它们相互一致。为了定义人工标签,我们利用这样一种假设,即神经网络生成器可以比不同类别更容易地被训练成像,以图示与语义相似的数据的隐性矢量。我们使用生成的数据样本及其相应的人工调节标签来训练分类器。然后,分类器被用于自我标签真实数据。为了提高自我标签的准确性,我们还使用分类器的指数移动平均值。然而,由于分类器仍然可能出错,特别是在培训开始时,我们还通过自我注意来改进标签,只有在分类器输出高分类概率时才使用真实数据样本的标签。我们评估了我们对CFAR-10、STL-10和SVHN的处理方法,并显示自我标签和自我保存都持续提高生成数据的质量。更令人惊讶的是,我们发现拟议的方案甚至可以超越G级要求。