We design a finite element method (FEM) for a membrane model of liquid crystal polymer networks (LCNs). This model consists of a minimization problem of a non-convex stretching energy. We discuss properties of this energy functional such as lack of rank-1 convexity. We devise a discretization with regularization, propose a novel iterative scheme to solve the non-convex discrete minimization problem, and prove stability of the scheme and convergence of discrete minimizers. We present numerical simulations to illustrate convergence properties of our algorithm and features of the model.
翻译:我们为液晶聚合网络(LCNs)的膜模型设计了一种有限元素方法(FEM),该模型包括将非电离层拉伸能量问题最小化。我们讨论了这种能源功能的特性,例如缺乏一级和一级固态。我们设计了一种与正规化分离的分化办法,提出了一种新颖的迭接办法以解决非离散最小化问题,并证明这个办法的稳定性和离散最小化器的趋同。我们用数字模拟来说明我们的算法和模型特征的趋同性。