In this paper, we develop a numerical method for the L\'evy-Fokker-Planck equation with the fractional diffusive scaling. There are two main challenges. One comes from a two-fold nonlocality, that is, the need to apply the fractional Laplacian operator to a power law decay distribution. The other arises from long-time/small mean-free-path scaling, which introduces stiffness to the equation. To resolve the first difficulty, we use a change of variable to convert the unbounded domain into a bounded one and then apply the Chebyshev polynomial based pseudo-spectral method. To treat the multiple scales, we propose an asymptotic preserving scheme based on a novel micro-macro decomposition that uses the structure of the test function in proving the fractional diffusion limit analytically. Finally, the efficiency and accuracy of our scheme are illustrated by a suite of numerical examples.


翻译:在本文中, 我们为 L\' evy- Fokker- Planck 方程式开发了一个数字方法, 配有分数的 diffusive 缩放 。 有两个主要挑战 。 一个来自双重非局部性, 即需要将分数的 Laplacecian 操作员应用到电源法的衰减分布中。 另一个来自长期/ 小型的无偏差缩放, 使方程式变得僵硬。 为了解决第一个难题, 我们用变量的更改将未绑定的域转换成一个绑定的域, 然后应用 Chebyshev 多元光谱法的假光谱法 。 为了处理多重尺度, 我们建议基于新颖的微缩微缩微分解配置, 使用测试函数的结构来分析分数扩散限制 。 最后, 我们计划的效率和精度由一组数字示例来说明 。

0
下载
关闭预览

相关内容

切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员