Analyzing the dynamic changes of cellular morphology is important for understanding the various functions and characteristics of live cells, including stem cells and metastatic cancer cells. To this end, we need to track all points on the highly deformable cellular contour in every frame of live cell video. Local shapes and textures on the contour are not evident, and their motions are complex, often with expansion and contraction of local contour features. The prior arts for optical flow or deep point set tracking are unsuited due to the fluidity of cells, and previous deep contour tracking does not consider point correspondence. We propose the first deep learning-based tracking of cellular (or more generally viscoelastic materials) contours with point correspondence by fusing dense representation between two contours with cross attention. Since it is impractical to manually label dense tracking points on the contour, unsupervised learning comprised of the mechanical and cyclical consistency losses is proposed to train our contour tracker. The mechanical loss forcing the points to move perpendicular to the contour effectively helps out. For quantitative evaluation, we labeled sparse tracking points along the contour of live cells from two live cell datasets taken with phase contrast and confocal fluorescence microscopes. Our contour tracker quantitatively outperforms compared methods and produces qualitatively more favorable results. Our code and data are publicly available at https://github.com/JunbongJang/contour-tracking/
翻译:分析细胞形态变化的动态变化对于理解活细胞,包括干细胞和转移性癌症细胞的各种功能和特征十分重要。 为此, 我们需要在每条活细胞视频框中跟踪高度变形细胞轮廓上的所有点。 轮廓上的本地形状和纹理并不明显, 其动作也非常复杂, 通常随着本地轮廓特征的扩展和收缩。 由于细胞的流动性, 先前的光学流动或深点跟踪艺术并不合适, 以前的深色轮廓跟踪不考虑点通信 。 我们建议对细胞( 或更一般的透视材料) 进行第一次深层次的基于学习的跟踪。 我们建议通过交叉关注在两个轮廓上的密集代表来跟踪点的轮廓。 由于手动在轮廓上贴密集的跟踪点不切实际, 由机械和周期一致性损失构成的学习是用来训练我们的轮廓追踪器的。 机械损失迫使这些点沿着直角移动至直角的轮廓移动的轨迹不会考虑点 。 在定量评估时, 我们用定量的轨迹上的数据跟踪方法是用我们的数据跟踪和直径轨方法进行更精确的对比。</s>