项目名称: 面向间歇过程的迭代学习预测控制理论和算法研究
项目编号: No.61273145
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 徐祖华
作者单位: 浙江大学
项目金额: 80万元
中文摘要: 为了适应瞬息万变的市场需求,现代工业正逐渐倚重于生产小批量、多品种、高附加值产品的间歇过程,如塑料加工、精细化工、生物制药等众多领域。与连续过程不同,间歇过程存在非稳态操作、非线性时变、有限运行时间、运行重复性、多速率反馈等鲜明特点。综合模型预测控制和迭代学习控制的优缺点,本课题拟研究面向间歇过程的迭代学习预测控制理论和算法体系,重点研究基于参数化LTV模型的非线性迭代学习预测控制、基于2D递归辨识的自适应迭代学习预测控制、间歇过程的多速率迭代学习预测控制,并在注塑机工业平台上加以应用验证。通过本项目的研究,丰富现有间歇过程的控制理论和方法,提高我国间歇生产过程的自动化水平。
中文关键词: 模型预测控制;迭代学习控制;间歇过程;;
英文摘要: As a perferred choice for manufacturing of low-volume and high-value products, batch processes play an increasingly important roles in modern industries,such as plastic processing, specialty chemicals and pharmaceuticals. Batch processes have the following unique features comparing to continuous processes: absence of steady state, strong nonlinearties, limited cycle time, repetitive nature and multi-rate sampling data. To deal with the forementioned difficulties, iterative learning model predictive control algorithms are investigated and developed for batch processes. This project focus on the following research topics: 1)nonlinear iterative learning model predictive control based on parameterized LTV model;2) adaptive iterative learning model predictive control based on 2D recursive identification; 3)multi-rate iterative learning model predictive control. Final, the effectiveness and robustness of the proposed methods will be verfied exxpermentally on industral injection molding machine.The aim of this project is to enrich the existing control theory of batch processes and improve the automation level of batch processes in china.
英文关键词: Model Predictive Control;Iterative Learning Control;Batch Processes;;