In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuffs (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior works either simply aggregate the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or use a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in sentence as context and infer the image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% in text retrieval from image query, and 18.2% in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% and image retrieval by 16.6% (based on Recall@1 using the 5K test set).
翻译:在本文中, 我们研究图像文本匹配问题 。 推断对象或其他突出的东西( 如雪、 天空、 草坪) 和句子中相应字词之间的潜在语义对齐( 如 雪、 天空、 草坪) 和对应词句之间的潜在语义对齐, 能够捕捉视觉和语言之间的细微交互作用, 并使图像文本匹配更加易解。 先前的作品要么只是将所有可能的区域和词对齐的相似性相加在一起, 而没有以不同的方式处理到更多、 不太重要的词或区域, 或者使用多步式的注意程序来捕捉数量有限的语义对齐( 较难解释的语义对齐) 。 在本文中, 我们展示了Sack Crost 注意, 以图像区域和句中的文字对齐( 以回回溯@ 1 为基础) 来发现全部潜在对齐 。 在 MS- CO1 中, 我们的方法实现了MS- CO1 和 Flick30K 数据设置的状态。 在 Flick30K 上, 我们的方法比当前的最佳方法更接近于从图像查询中恢复22.11%, 和18. 2 与图像检索 ( 以 16. 8 恢复 ) 。