Processing point clouds using deep neural networks is still a challenging task. Most existing models focus on object detection and registration with deep neural networks using point clouds. In this paper, we propose a deep model that learns to estimate odometry in driving scenarios using point cloud data. The proposed model consumes raw point clouds in order to extract frame-to-frame odometry estimation through a hierarchical model architecture. Also, a local bundle adjustment variation of this model using LSTM layers is implemented. These two approaches are comprehensively evaluated and are compared against the state-of-the-art.
翻译:使用深神经网络处理点云仍然是一项具有挑战性的任务。 大多数现有模型侧重于物体探测和用点云对深神经网络进行注册。 在本文中,我们提出了一个深层次模型,用以学习使用点云数据对驾驶情景中的异测进行估计。拟议模型消耗原始点云,以便通过一个等级模型结构来提取框架到框架的观察测量估计。此外,还实施了使用 LSTM 层对模型进行本地捆绑调整的变异。这两种方法都经过全面评估,并与最新技术进行比较。