The continuous modal mu-calculus is a fragment of the modal mu-calculus, where the application of fixpoint operators is restricted to formulas whose functional interpretation is Scott-continuous, rather than merely monotone. By game-theoretic means, we show that this relatively expressive fragment still allows two important techniques of basic modal logic, which notoriously fail for the full modal mu-calculus: filtration and canonical models. In particular, we show that the Filtration Theorem holds for formulas in the language of the continuous modal mu-calculus. As a consequence we obtain the finite model property over a wide range of model classes. Moreover, we show that if a basic modal logic L is canonical and the class of L-frames admits filtration, then the logic obtained by adding continuous fixpoint operators to L is sound and complete with respect to the class of L-frames. This generalises recent results on a strictly weaker fragment of the modal mu-calculus, viz. PDL.
翻译:连续的模量模量计算母体是模块模量计算母体的碎片, 固定点操作员的应用仅限于功能解释为Scott- continy的公式, 而不仅仅是单质的公式。 我们通过游戏理论手段表明, 这种相对表达的碎片仍然允许两种重要的基本模量逻辑技术, 其整个模量计算母体的全模量计算母体明显失败: 过滤和卡通模型。 特别是, 我们显示, 定点操作员的公式以连续的模量计算母体的语言持有。 结果是, 我们获得了一系列模型类中的有限模型属性。 此外, 我们表明, 如果基本的模量逻辑L是卡通逻辑, 而L- 框架的类别也承认过滤, 那么通过加入连续的固定点操作者而获得的逻辑对于L- 框架的类别来说是合理和完整的。 这个一般性的最近结果显示的是, 模型的模量母体计算母体( viz. PDL. PDL. ) 的严格较弱的碎片。