We investigate a recent proposal for modal hypersequent calculi. The interpretation of relational hypersequents incorporates an accessibility relation along the hypersequent. These systems give the same interpretation of hypersequents as Lellman's linear nested sequents, but were developed independently by Restall for S5 and extended to other normal modal logics by Parisi. The resulting systems obey Dosen's principle: the modal rules are the same across different modal logics. Different modal systems only differ in the presence or absence of external structural rules. With the exception of S5, the systems are modular in the sense that different structural rules capture different properties of the accessibility relation. We provide the first direct semantical cut-free completeness proofs for K, T, and D, and show how this method fails in the case of B and S4.
翻译:我们调查了最近一项有关模式性超序列计算的建议。 对关系性超序列的解释包含在超序列上的无障碍关系。 这些系统对超序列的诠释与Lellman的线性嵌巢序列相同,但由Restall为S5独立开发,并扩展至Parisi的其他正常模式逻辑。 由此产生的系统遵循了Dosen的原则: 模式规则在不同的模式逻辑中是相同的。 不同的模式系统只在存在或没有外部结构规则的情况下有所不同。 除了S5外, 系统是模块化的, 不同的结构规则反映了无障碍关系的不同特性。 我们为K、 T和D提供了第一个直接的语义性断开的完整证明, 并展示了这种方法在B和S4的情况下是如何失败的。