Federated learning (FL) for medical image segmentation becomes more challenging in multi-task settings where clients might have different categories of labels represented in their data. For example, one client might have patient data with "healthy'' pancreases only while datasets from other clients may contain cases with pancreatic tumors. The vanilla federated averaging algorithm makes it possible to obtain more generalizable deep learning-based segmentation models representing the training data from multiple institutions without centralizing datasets. However, it might be sub-optimal for the aforementioned multi-task scenarios. In this paper, we investigate heterogeneous optimization methods that show improvements for the automated segmentation of pancreas and pancreatic tumors in abdominal CT images with FL settings.
翻译:医学图像分割的联邦学习(FL)在多任务环境中变得更具有挑战性,因为客户可能在其数据中含有不同类别的标签。例如,一个客户可能拥有“健康'的胰腺”的耐心数据,而其他客户的数据集可能含有胰腺肿瘤病例。香草联结平均算法使得有可能在不集中数据集的情况下从多个机构获得更普遍的深层次学习分解模型,代表培训数据。然而,对于上述多任务设想方案来说,这可能是次最佳的。在本文件中,我们调查了显示与FL设置的腹部CT图像中胰腺和胰腺肿瘤自动分解改进的多元优化方法。