RGB-D semantic segmentation has attracted increasing attention over the past few years. Existing methods mostly employ homogeneous convolution operators to consume the RGB and depth features, ignoring their intrinsic differences. In fact, the RGB values capture the photometric appearance properties in the projected image space, while the depth feature encodes both the shape of a local geometry as well as the base (whereabout) of it in a larger context. Compared with the base, the shape probably is more inherent and has a stronger connection to the semantics, and thus is more critical for segmentation accuracy. Inspired by this observation, we introduce a Shape-aware Convolutional layer (ShapeConv) for processing the depth feature, where the depth feature is firstly decomposed into a shape-component and a base-component, next two learnable weights are introduced to cooperate with them independently, and finally a convolution is applied on the re-weighted combination of these two components. ShapeConv is model-agnostic and can be easily integrated into most CNNs to replace vanilla convolutional layers for semantic segmentation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures. Moreover, the performance of CNNs with ShapeConv is boosted without introducing any computation and memory increase in the inference phase. The reason is that the learnt weights for balancing the importance between the shape and base components in ShapeConv become constants in the inference phase, and thus can be fused into the following convolution, resulting in a network that is identical to one with vanilla convolutional layers.


翻译:过去几年来, RGB- D 语义断裂已引起越来越多的关注 。 现有方法大多使用同质变动操作器来消耗 RGB 和深度特性, 忽略了它们的内在差异 。 事实上, RGB 值捕捉了预测图像空间的光度外观属性, 而深度特性则将本地几何形状和基底( 位置) 编码成一个更大的背景。 与基底相比, 形状可能更具有内在性, 与语义联系更紧密, 因而对分解准确性来说更为关键 。 受此观察的启发, 我们引入了一个 Shape-aware 变异层, 我们引入了 Shabe 变异性 和 变异性 。 变异 变异 变异 变变 变 和 变异性 变异性变异, 变异性变异性变异性变异性变异性变异性 。 变异性变异性变异性变异性 变异性变异性变异性变变异性变异性变异性变异性变变异性, 变异性变异性变异性变异性变异性变性变性变异性变异性变异性变性变性变变变变变变变变变变变变变变变变变变变变变变变变性变变变变变变变变变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变变性,, 。 变性变性变异性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变变变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变性变变性变

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
DeepLab V3
计算机视觉战队
9+阅读 · 2018年4月2日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
用于RGB-D室内场景语义分割的门式融合局部感知反卷积网络
机器学习研究会
7+阅读 · 2017年10月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
3+阅读 · 2020年4月29日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
DeepLab V3
计算机视觉战队
9+阅读 · 2018年4月2日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
语义分割+视频分割开源代码集合
极市平台
35+阅读 · 2018年3月5日
用于RGB-D室内场景语义分割的门式融合局部感知反卷积网络
机器学习研究会
7+阅读 · 2017年10月30日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员