Sparsity is an intrinsic property of neural network(NN). Many software researchers have attempted to improve sparsity through pruning, for reduction on weight storage and computation workload, while hardware architects are working on how to skip redundant computations for higher energy efciency, but there always exists overhead, causing many architectures suffering from only minor proft. Therefrom, systolic array becomes a promising candidate for the advantages of low fanout and high throughput. However, sparsity is irregular, making it tricky to ft in with the rigid systolic tempo. Thus, this paper proposed a systolic-based architecture, called Sense, for both sparse input feature map(IFM) and weight processing, achieving large performance improvement with relatively small resource and power consumption. Meanwhile, we applied channel rearrangement to gather IFMs with approximate sparsity and co-designed an adaptive weight training method to keep the sparsity ratio(zero element percentage) of each kernel at 1/2, with little accuracy loss. This treatment can effectively reduce the irregularity of sparsity and help better ft with systolic dataflow. Additionally, a dataflow called Partition Reuse is mapped to our architecture, enhancing data reuse, lowering 1.9x-2.6x DRAM access reduction compared with Eyeriss and further reducing system energy consumption. The whole design is implemented on ZynqZCU102 and performs at a peak throughput of 409.6 GOP/s, with power consumption of 11.2W; compared with previous sparse NN accelerators based on FPGA, Sense takes up 1/5 less LUTs and 3/4 less BRAMs, reaches 2.1x peak energy efciency and achieves 1.15x-1.49x speedup.


翻译:光谱是神经网络( NN) 的固有属性。 许多软件研究人员试图通过裁剪改善广度,减少重量储存和计算工作量,而硬件建筑师正在研究如何跳过多余的计算,以降低能源的更弱性能,但总是有间接费用,造成许多建筑只有轻微的分流。从此,系统阵列成为低扇形和高通量优势的一个有希望的候选体。然而,系统松散是不规律的,使其难以在硬性神经运动节奏下转。因此,本文提出了一个基于神经的架构,即Sense(Sense),用于研究如何在稀少的输入图(IFM)和重量处理中跳过多余的计算,在相对较少的资源和电力消耗量的情况下实现大幅的性能改进。 同时,我们运用渠道重新排列来收集具有近乎紧张性的IFMD, 并共同设计一个调重力训练方法,将每个内流( 零元素百分比) 保持在1/2, 且不那么精确的损失。 这种处理可以有效地减少FC 的不规则性, 并帮助改善FIFNU- 09- 2 和Sliveral- dal- disal disalx的消费结构, 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
21+阅读 · 2021年2月13日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员