Deep Neural Networks (DNNs) are vulnerable to invisible perturbations on the images generated by adversarial attacks, which raises researches on the adversarial robustness of DNNs. A series of methods represented by the adversarial training and its variants have proven as one of the most effective techniques in enhancing the DNN robustness. Generally, adversarial training focuses on enriching the training data by involving perturbed data. Despite of the efficiency in defending specific attacks, adversarial training is benefited from the data augmentation, which does not contribute to the robustness of DNN itself and usually suffers from accuracy drop on clean data as well as inefficiency in unknown attacks. Towards the robustness of DNN itself, we propose a novel defense that aims at augmenting the model in order to learn features adaptive to diverse inputs, including adversarial examples. Specifically, we introduce multiple paths to augment the network, and impose orthogonality constraints on these paths. In addition, a margin-maximization loss is designed to further boost DIversity via Orthogonality (DIO). Extensive empirical results on various data sets, architectures, and attacks demonstrate the adversarial robustness of the proposed DIO.


翻译:对抗性训练及其变式所呈现的一系列方法被证明是增强DNN稳健性的最有效方法之一。一般而言,对抗性训练侧重于通过使用扰动数据来丰富培训数据。尽管在防御特定攻击方面的效率很高,但对抗性训练得益于数据增强,这无助于DNN本身的稳健性,通常还受到清洁数据准确性下降以及不明攻击效率低下的影响。为了提高DNN本身的稳健性,我们提出了新的辩护,目的是加强模型,以学习适应多种投入的特点,包括对抗性例子。具体地说,我们引入多种途径来扩大网络,并在这些路径上施加或分层限制。此外,差-峰化损失的目的是通过Orthorticity进一步增强DNN的多样化。关于各种数据集、架构和攻击的深入经验结果展示了拟议的DIO的稳健性。

0
下载
关闭预览

相关内容

VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
22+阅读 · 2021年12月2日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员