Recent studies show that even highly biased dense networks contain an unbiased substructure that can achieve better out-of-distribution (OOD) generalization than the original model. Existing works usually search the invariant subnetwork using modular risk minimization (MRM) with out-domain data. Such a paradigm may bring about two potential weaknesses: 1) Unfairness, due to the insufficient observation of out-domain data during training; and 2) Sub-optimal OOD generalization, due to the feature-untargeted model pruning on the whole data distribution. In this paper, we propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures without referring to the above weaknesses. Specifically, SFP identifies in-distribution (ID) features during training using our theoretically verified task loss, upon which, SFP can perform ID targeted-model pruning that removes branches with strong dependencies on ID features. Notably, by attenuating the projections of spurious features into model space, SFP can push the model learning toward invariant features and pull that out of environmental features, devising optimal OOD generalization. Moreover, we also conduct detailed theoretical analysis to provide the rationality guarantee and a proof framework for OOD structures via model sparsity, and for the first time, reveal how a highly biased data distribution affects the model's OOD generalization. Extensive experiments on various OOD datasets show that SFP can significantly outperform both structure-based and non-structure OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively.


翻译:最近的研究显示,即使高度偏差的密集网络也包含一个公正的下层结构,可以比原始模型更好地实现分配外(OOOD)的概括化。现有的工程通常使用外部数据,用模块风险最小化(MRM)来搜索变化中的子网络。这种范式可能会带来两个潜在的弱点:(1) 由于培训期间对外部数据观测不足,不公平;和(2) 由于在全数据分布模式上运行的特征未加目标的模型,OOOOD一般化是最佳的。在本文中,我们提出一个新的纯净性、目标型样的简化模型框架,即假冒的SFP,在不提及上述弱点的情况下自动探索变异性亚结构。具体地说,SFP在培训期间,利用我们理论上核实的任务损失,确定分配中的(ID)特性,据此,SFP可以确定目标模型的调整,从而消除在ID模型特征上具有很强依赖性的分支。值得注意的是,SOD改进到模型空间的预测,SFP可以将模型推向不易变的模型的精确性定位性模型,将OFSFP框架自动探索出非结构,同时进行精确的模型分析,同时进行精确的 OOODA格式分析,同时设计,并进行最精确的 OODODA格式化,同时进行最精确化的数据结构,并且进行最精确地分析。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员