We present a hybrid industrial cooling system model that embeds analytical solutions within a multi-physics simulation. This model is designed for reinforcement learning (RL) applications and balances simplicity with simulation fidelity and interpretability. The model's fidelity is evaluated against real world data from a large scale cooling system. This is followed by a case study illustrating how the model can be used for RL research. For this, we develop an industrial task suite that allows specifying different problem settings and levels of complexity, and use it to evaluate the performance of different RL algorithms.
翻译:我们提出了一个混合工业冷却系统模型,在多物理模拟中嵌入分析解决方案。该模型旨在强化学习(RL)应用,并平衡简单性和模拟忠诚性和可解释性。该模型的忠诚性根据一个大型冷却系统的真实世界数据进行评估。随后进行案例研究,说明该模型如何用于RL研究。为此,我们开发了一个工业任务套件,可以具体确定不同的问题设置和复杂程度,并用来评估不同的RL算法的性能。