This paper presents COOL-MC, a tool that integrates state-of-the-art reinforcement learning (RL) and model checking. Specifically, the tool builds upon the OpenAI gym and the probabilistic model checker Storm. COOL-MC provides the following features: (1) a simulator to train RL policies in the OpenAI gym for Markov decision processes (MDPs) that are defined as input for Storm, (2) a new model builder for Storm, which uses callback functions to verify (neural network) RL policies, (3) formal abstractions that relate models and policies specified in OpenAI gym or Storm, and (4) algorithms to obtain bounds on the performance of so-called permissive policies. We describe the components and architecture of COOL-MC and demonstrate its features on multiple benchmark environments.


翻译:本文介绍COOL-MC,这是一个综合最新强化学习(RL)和模型检查的工具,具体地说,该工具以OpenAI健身房和概率模型检查器 " 风暴 " 为基础。COOL-MC提供以下特征:(1) 一个模拟器,用于在OpenAI健身房培训RL政策,用于作为 " 风暴 " 投入的Markov决策程序(MDPs),(2) 一个新的 " 风暴 " 模型构建器,利用回调功能核查(神经网络)RL政策,(3) 与OpenAI健身房或 " 风暴 " 中具体规定的模式和政策相关的正式抽象数据,(4) 算法,以获得关于所谓 " 许可政策 " 绩效的界限,我们描述COOL-MC的组成部分和结构,并展示其在多个基准环境中的特点。

0
下载
关闭预览

相关内容

分布式容错实时计算系统
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
67+阅读 · 2022年4月13日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员