We consider prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. This semi-adversarial setting includes (at the extremes) the classical i.i.d. setting, when the unknown constraint set is restricted to be a singleton, and the unconstrained adversarial setting, when the constraint set is the set of all distributions. The Hedge algorithm -- long known to be minimax (rate) optimal in the adversarial regime -- was recently shown to be simultaneously minimax optimal for i.i.d. data. In this work, we propose to relax the i.i.d. assumption by seeking adaptivity at all levels of a natural ordering on constraint sets. We provide matching upper and lower bounds on the minimax regret at all levels, show that Hedge with deterministic learning rates is suboptimal outside of the extremes, and prove that one can adaptively obtain minimax regret at all levels. We achieve this optimal adaptivity using the follow-the-regularized-leader (FTRL) framework, with a novel adaptive regularization scheme that implicitly scales as the square root of the entropy of the current predictive distribution, rather than the entropy of the initial predictive distribution. Finally, we provide novel technical tools to study the statistical performance of FTRL along the semi-adversarial spectrum.
翻译:当数据是在未知的制约下任意分配产生的时,我们考虑专家意见的预测。这种半对抗性环境包括(极端)古典i.d.设置,当未知的制约设设限于单吨,而没有限制的对抗设置,当约束设为所有分布组时,我们考虑的是不受限制的对抗设置,当约束设是所有分布组的组合时,我们考虑的是不受限制的对抗设置。最近,在对抗性机制中,人们早就知道最优(速度)最优的隐性算法被证明是同时对i.d.数据最优化。在这项工作中,我们提议通过在所有限制组的自然排序中寻求适应性来放松i.i.d.假设。我们提供微小限制设限设置的上下限设置,在所有级别上和下设置上下设置的界限,当限制设限制设限制设限制设限制设的制约设限是所有分布组的制约组,而没有限制性学习率的套合点在极端之外,证明一个人能够适应性地在所有级别获得最优的遗憾。我们利用后续-领导(FTRL)框架框架框架实现这一最佳适应性适应性适应性适应性框架。我们建议,一个新的适应性调整性调整性调整性调整性调整性调整性调整性调整性调整性调整性调整性方案方案,其规模方案方案,以隐隐性调整性调整性调整性调整性调整性调整性方案,作为当前统计性模型的模型的原始预测性模型的模型的模型的初始性分布图的模型的初始性模型的模型的初始性模型的模型,即为最后的模型的模型的模型的模型的模型的模型的模型,即最后的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的预测性分布。