While the benefits of 6G-enabled Internet of Things (IoT) are numerous, providing high-speed, low-latency communication that brings new opportunities for innovation and forms the foundation for continued growth in the IoT industry, it is also important to consider the security challenges and risks associated with the technology. In this paper, we propose a two-stage intrusion detection framework for securing IoTs, which is based on two detectors. In the first stage, we propose an adversarial training approach using generative adversarial networks (GAN) to help the first detector train on robust features by supplying it with adversarial examples as validation sets. Consequently, the classifier would perform very well against adversarial attacks. Then, we propose a deep learning (DL) model for the second detector to identify intrusions. We evaluated the proposed approach's efficiency in terms of detection accuracy and robustness against adversarial attacks. Experiment results with a new cyber security dataset demonstrate the effectiveness of the proposed methodology in detecting both intrusions and persistent adversarial examples with a weighted avg of 96%, 95%, 95%, and 95% for precision, recall, f1-score, and accuracy, respectively.


翻译:尽管 6G 物联网(IoT)所提供的高速、低延迟通讯带来了创新机遇,且是 IoT 行业持续增长的基石,但也不能忽视与技术相关的安全挑战和风险。本文提出了一种用于保护 IoT 的两阶段入侵检测框架,它基于两个检测器。在第一阶段中,我们提出了一种基于生成对抗网络(GAN)的对抗式训练方法,通过将对抗样本作为验证集来帮助第一个检测器训练出鲁棒的特征。因此,分类器会针对对抗攻击表现出色。然后,我们提出了一个用于第二检测器的深度学习(DL)模型来识别入侵行为。我们通过一个新的网络安全数据集评估了所提出方法在检测准确率和鲁棒性方面的效率。实验结果表明,所提出的方法在检测入侵和持久性对抗样本方面具有较高的精度、召回率、f1-score 和准确度(加权平均分别为 96%、95%、95% 和 95%)。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月27日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
8+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员