We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC-inexpressibility results for Unique Games: the existence of a (1/2, 1/3 + $\delta$)-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.
翻译:我们研究在固定点计算逻辑(FCC)中,在多大程度上可以接近一个独特的游戏实例的最佳价值。我们证明,在单一游戏中,有两种新的FPC不为人知的结果:存在一个(1/2, 1/3+$=delta$)与不协调的差异,以及无法在任何不变因素中兼容。过去的工作为少数其他问题确定了类似的FPC不协调结果。我们建筑基于其中的一些想法,但包含一种新颖的技术。虽然大多数FPC不为人知的结果是基于建构建建构的变体,但我们的情况却大不相同。