This paper presents the Rail-5k dataset for benchmarking the performance of visual algorithms in a real-world application scenario, namely the rail surface defects detection task. We collected over 5k high-quality images from railways across China, and annotated 1100 images with the help from railway experts to identify the most common 13 types of rail defects. The dataset can be used for two settings both with unique challenges, the first is the fully-supervised setting using the 1k+ labeled images for training, fine-grained nature and long-tailed distribution of defect classes makes it hard for visual algorithms to tackle. The second is the semi-supervised learning setting facilitated by the 4k unlabeled images, these 4k images are uncurated containing possible image corruptions and domain shift with the labeled images, which can not be easily tackle by previous semi-supervised learning methods. We believe our dataset could be a valuable benchmark for evaluating robustness and reliability of visual algorithms.
翻译:本文展示了用于在现实世界应用情景(即铁路表面缺陷检测任务)中为视觉算法的性能设定基准的Lial-5k数据集。 我们从中国铁路中收集了5千多张高品质图像,并在铁路专家的帮助下收集了1100张附加说明的图像,以查明最常见的13类铁路缺陷。 数据集可用于两种环境,两种环境都有独特的挑战,第一个是使用1千+标签图像进行培训、精细鉴别性质和缺陷等级的长尾分布的完全监督的设置,这使得视觉算法难以解决。 第二个是由4千无标签图像推动的半监督学习环境,这4千张图像未经验证,包含可能存在的图像腐败和域变,而标签图像无法轻易由以前的半监督的学习方法解决。 我们相信,我们的数据集可以成为评估视觉算法的稳健性和可靠性的宝贵基准。