The internet is filled with fake face images and videos synthesized by deep generative models. These realistic DeepFakes pose a challenge to determine the authenticity of multimedia content. As countermeasures, artifact-based detection methods suffer from insufficiently fine-grained features that lead to limited detection performance. DNN-based detection methods are not efficient enough, given that a DeepFake can be created easily by mobile apps and DNN-based models require high computational resources. For the first time, we show that DeepFake faces have fewer feature points than real ones, especially in certain facial regions. Inspired by feature point detector-descriptors to extract discriminative features at the pixel level, we propose the Fused Facial Region_Feature Descriptor (FFR_FD) for effective and fast DeepFake detection. FFR_FD is only a vector extracted from the face, and it can be constructed from any feature point detector-descriptors. We train a random forest classifier with FFR_FD and conduct extensive experiments on six large-scale DeepFake datasets, whose results demonstrate that our method is superior to most state of the art DNN-based models.
翻译:互联网上装满了由深基因模型合成的假面相和视频。 这些现实的深面图象对确定多媒体内容的真实性提出了挑战。 作为对策,基于文物的检测方法具有的细微特征不够,导致检测性能有限。 基于 DNN 的检测方法不够有效, 因为在移动应用程序和基于 DNN 的模型中, 深面图象可以很容易生成, 需要高计算资源。 我们第一次显示, DeepFake 的特征点比真实的要少, 特别是在某些面部区域。 受特征点探测器描述器的启发, 在像素一级提取有区别的特征。 作为对策, 我们建议使用 FAFR_ FD 来有效和快速地检测 DEepFake 描述器( FFR_ FD) 。 FFR_ FD 仅仅是从脸上提取的矢量器, 并且可以用任何地点探测器来构建。 我们用 FFR_ FDM 来培训一个随机的森林分类器, 并且对六种大型深Fake 数据集进行广泛的实验, 其结果显示, 我们的方法优于以DNNFN 最基于艺术模型的状态。