An income distribution describes how an entity's total wealth is distributed amongst its population. A problem of interest to regional economics researchers is to understand the spatial homogeneity of income distributions among different regions. In economics, the Lorenz curve is a well-known functional representation of income distribution. In this article, we propose a mixture of finite mixtures (MFM) model as well as a Markov random field constrained mixture of finite mixtures (MRFC-MFM) model in the context of spatial functional data analysis to capture spatial homogeneity of Lorenz curves. We design efficient Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the posterior distributions of the number of clusters and the clustering configuration of spatial functional data. Extensive simulation studies are carried out to show the effectiveness of the proposed methods compared with existing methods. We apply the proposed spatial functional clustering method to state level income Lorenz curves from the American Community Survey Public Use Microdata Sample (PUMS) data. The results reveal a number of important clustering patterns of state-level income distributions across US.
翻译:收入分配说明一个实体的总财富是如何在人口之间分配的。区域经济研究人员感兴趣的一个问题是了解不同区域收入分配的空间同质性。在经济学中,洛伦茨曲线是众所周知的收入分配功能代表。在本条中,我们提议结合空间功能数据分析,将一定混合物(MRFC-MFM)模型和限量混合物的Markov随机组合模型(MRFC-MFM)结合空间功能数据分析,以捕捉洛伦茨曲线的空间同质性。我们设计高效的马可夫链蒙特卡洛(MCMC)算法,以同时推断组群数量和空间功能数据集群配置的外表分布。进行了广泛的模拟研究,以显示拟议方法与现有方法相比的有效性。我们将拟议的空间功能组合方法应用于美国社区调查公共使用微数据抽样(PIMS)数据(MUMS)中的国家水平Lorenz曲线。结果揭示了美国各州一级收入分配的重要组合模式。