An income distribution describes how an entity's total wealth is distributed amongst its population. A problem of interest to regional economics researchers is to understand the spatial homogeneity of income distributions among different regions. In economics, the Lorenz curve is a well-known functional representation of income distribution. In this article, we propose a mixture of finite mixtures (MFM) model as well as a Markov random field constrained mixture of finite mixtures (MRFC-MFM) model in the context of spatial functional data analysis to capture spatial homogeneity of Lorenz curves. We design efficient Markov chain Monte Carlo (MCMC) algorithms to simultaneously infer the posterior distributions of the number of clusters and the clustering configuration of spatial functional data. Extensive simulation studies are carried out to show the effectiveness of the proposed methods compared with existing methods. We apply the proposed spatial functional clustering method to state level income Lorenz curves from the American Community Survey Public Use Microdata Sample (PUMS) data. The results reveal a number of important clustering patterns of state-level income distributions across US.


翻译:收入分配说明一个实体的总财富是如何在人口之间分配的。区域经济研究人员感兴趣的一个问题是了解不同区域收入分配的空间同质性。在经济学中,洛伦茨曲线是众所周知的收入分配功能代表。在本条中,我们提议结合空间功能数据分析,将一定混合物(MRFC-MFM)模型和限量混合物的Markov随机组合模型(MRFC-MFM)结合空间功能数据分析,以捕捉洛伦茨曲线的空间同质性。我们设计高效的马可夫链蒙特卡洛(MCMC)算法,以同时推断组群数量和空间功能数据集群配置的外表分布。进行了广泛的模拟研究,以显示拟议方法与现有方法相比的有效性。我们将拟议的空间功能组合方法应用于美国社区调查公共使用微数据抽样(PIMS)数据(MUMS)中的国家水平Lorenz曲线。结果揭示了美国各州一级收入分配的重要组合模式。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
69+阅读 · 2020年10月17日
专知会员服务
55+阅读 · 2020年10月11日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
神器Cobalt Strike3.13破解版
黑白之道
12+阅读 · 2019年3月1日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员