Modeling event dynamics is central to many disciplines. Patterns in observed event arrival times are commonly modeled using point processes. Such event arrival data often exhibits self-exciting, heterogeneous and sporadic trends, which is challenging for conventional models. It is reasonable to assume that there exists a hidden state process that drives different event dynamics at different states. In this paper, we propose a Markov Modulated Hawkes Process (MMHP) model for learning such a mixture of event dynamics and develop corresponding inference algorithms. Numerical experiments using synthetic data demonstrate that MMHP with the proposed estimation algorithms consistently recover the true hidden state process in simulations, while email data from a large university and data from an animal behavior study show that the procedure captures distinct event dynamics that reveal interesting social structures in the real data.
翻译:模拟事件动态是许多学科的核心。 观察到的事件到达时间模式通常使用点数过程进行模型化。 此类事件抵达数据往往显示出自我刺激、多样化和零星的趋势,这对传统模式来说是挑战。 有理由假设存在一个隐藏的状态进程,在不同州驱动不同事件动态。 在本文中,我们建议采用Markov Moded Hawes进程(MMHP)模型来学习这种事件动态的混合,并开发相应的推理算法。 使用合成数据进行的数字实验表明,MMHP与拟议的估算算法在模拟中一致恢复了真实的隐藏状态进程,而大型大学的电子邮件数据和动物行为研究中的数据则表明,该程序捕捉了显示真实数据中有趣的社会结构的不同事件动态。