Offline reinforcement learning (offline RL) considers problems where learning is performed using only previously collected samples and is helpful for the settings in which collecting new data is costly or risky. In model-based offline RL, the learner performs estimation (or optimization) using a model constructed according to the empirical transition frequencies. We analyze the sample complexity of vanilla model-based offline RL with dependent samples in the infinite-horizon discounted-reward setting. In our setting, the samples obey the dynamics of the Markov decision process and, consequently, may have interdependencies. Under no assumption of independent samples, we provide a high-probability, polynomial sample complexity bound for vanilla model-based off-policy evaluation that requires partial or uniform coverage. We extend this result to the off-policy optimization under uniform coverage. As a comparison to the model-based approach, we analyze the sample complexity of off-policy evaluation with vanilla importance sampling in the infinite-horizon setting. Finally, we provide an estimator that outperforms the sample-mean estimator for almost deterministic dynamics that are prevalent in reinforcement learning.


翻译:离线强化学习(离线 RL) 考虑的是,在学习过程中,仅使用先前收集的样本进行学习的问题,对于收集新数据的成本或风险环境是有助益的。在基于模型的离线RL中,学习者使用根据经验过渡频率构建的模式进行估计(或优化)。我们分析了香草模型离线学习的样本复杂性,在无穷度折扣降价环境下有依赖性的样本。在设定中,样本符合Markov决定过程的动态,因此可能具有相互依存性。在不假定独立样本的情况下,我们提供了一种高概率、多元样本复杂性,用于需要部分或统一覆盖的香草模型离政策评估。我们将这一结果推广到统一覆盖下的脱政策优化。作为与基于模型的方法的比较,我们分析了非政策评估的样本复杂性,在无穷度休养分层设置中,我们提供了一种估测算器,它比样本中标定值的精度高,因为几乎具有确定性动态,在加强学习中十分普遍。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
66+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关论文
Arxiv
0+阅读 · 2023年4月27日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
66+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员