The evolution of high-performance computing is associated with the growth of energy consumption. Performance of cluster computes (is increased via rising in performance and the number of used processors, GPUs, and coprocessors. An increment in the number of computing elements results in significant growth of energy consumption. Power grids limits for supercomputer centers (SCC) are driving the transition to more energy-efficient solutions. Often upgrade of computing resources is done step-by-step, i.e. parts of older supercomputers are removed from service and replaced with newer ones. A single SCC at any time can operate several computing systems with different performance and power consumption. That is why the problem of scheduling parallel programs execution on SCC resources to optimize energy consumption and minimize the increase in execution time (energy-efficient scheduling) is important. The goal of the presented work was the development of a new energy-efficient algorithm for scheduling computing resources at SCC. To reach the goal the authors analyzed methods of scheduling computing resources in a shared facility, including energy consumption minimizing methods. The study made it possible to formulate the problem of energy-efficient scheduling for a set of CCs and propose an algorithm for its solution. Experiments on NPB benchmarks allowed achieving significant reduction in energy consumption with a minor increase of runtime.


翻译:高性能计算的发展与能源消耗的增长相关联; 集束计算(通过性能提高和使用过的处理器、GPU和共同处理器的数量而提高)的性能(通过使用量和用过的处理器、GPU和共同处理器的数量的增加而提高); 计算元素数量的增加导致能源消耗的大幅增加; 超级计算机中心的电网限制正在推动向更节能的解决方案的过渡; 计算机资源的升级经常是逐步进行的,即一些老的超级计算机的一部分被淘汰,取而代之的是较新的计算机。 单一的SCC随时可以操作几个具有不同性能和电耗的计算系统。这就是为什么将SCC资源平行执行方案以优化能源消耗和最大限度地减少执行时间(节能时间安排)的问题很重要。 所述工作的目标是开发一个新的节能算法,用于将计算机资源安排在SCC。 为了达到目标,作者分析了将计算资源安排在一个共享的设施中,包括能源消耗最小化的方法。 这项研究使得有可能为一套CCS和电力消耗量不同的计算系统制定节能安排时间表的问题,并提议一个可大幅度降低其耗时标值。

0
下载
关闭预览

相关内容

如今,服务业占据了IT行业的主要部分。公司越来越喜欢专注于其核心专业领域,并使用IT服务来满足其所有外围需求。服务计算是一门新的科学,其目的是研究和更好地理解这个高度流行的产业的基础。它涵盖了利用计算和信息技术来建模、创建、操作和管理业务服务的科学和技术。SCC 2019也将为构建这一重要科学的支柱和塑造服务计算的未来做出贡献。 官网链接:https://conferences.computer.org/services/2019/
专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
The Specialized High-Performance Network on Anton 3
Arxiv
0+阅读 · 2022年1月20日
Arxiv
0+阅读 · 2022年1月19日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员