Streaming end-to-end multi-talker speech recognition aims at transcribing the overlapped speech from conversations or meetings with an all-neural model in a streaming fashion, which is fundamentally different from a modular-based approach that usually cascades the speech separation and the speech recognition models trained independently. Previously, we proposed the Streaming Unmixing and Recognition Transducer (SURT) model based on recurrent neural network transducer (RNN-T) for this problem and presented promising results. However, for real applications, the speech recognition system is also required to determine the timestamp when a speaker finishes speaking for prompt system response. This problem, known as endpoint (EP) detection, has not been studied previously for multi-talker end-to-end models. In this work, we address the EP detection problem in the SURT framework by introducing an end-of-sentence token as an output unit, following the practice of single-talker end-to-end models. Furthermore, we also present a latency penalty approach that can significantly cut down the EP detection latency. Our experimental results based on the 2-speaker LibrispeechMix dataset show that the SURT model can achieve promising EP detection without significantly degradation of the recognition accuracy.


翻译:发送端对端多讲者语音识别,目的是用流式方式将对话或会议与全神经模式的谈话或会议重叠的演讲内容与全神经模式进行校正,这与通常将语音分离和语音识别模式单独培训的模块化方法有根本的区别。以前,我们提议了基于经常性神经网络传输器(RNN-T)的流到端多讲者语音识别模型(SURT)来解决这个问题,并提出了有希望的结果。然而,对于真正的应用,还需要语音识别系统来确定演讲者为迅速系统响应而发言的时间间隔。这个问题被称为端点(EP)检测,以前还没有研究过多对话者端到端模式。在这项工作中,我们根据单一谈话器端对端对端模式的做法,在SURT框架内将EP检测问题作为输出单位处理。此外,我们还提出了一种长期处罚方法,可以大幅削减EP检测的定位值。我们称之为端点(EPEP)检测器的检测,以前还没有研究过多对端到端模式的检测。我们实验性结果可以显著地显示二号的降解数据。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2018年5月17日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员