The Kaczmarz method is an iterative projection scheme for solving con-sistent system $Ax = b$. It is later extended to the inconsistent and ill-posed linear problems. But the classical Kaczmarz method is sensitive to the correlation of the adjacent equations. In order to reduce the impact of correlation on the convergence rate, the randomized Kaczmarz method and randomized block Kaczmarz method are proposed, respectively. In the current literature, the error estimate results of these methods are established based on the error $\|x_k-x_*\|_2$, where $x_*$ is the solution of linear system $Ax=b$. In this paper, we extend the present error estimates of the Kaczmarz and randomized Kaczmarz methods on the basis of the convergence theorem of Kunio Tanabe, and obtain some general results about the error $\|x_k-P_{N(A)}x_0-x^\dagger\|_2$.
翻译:Kaczmarz 法是解决连接系统($Ax = b$)的迭代预测方案。 它后来扩大到不一致和错误的线性问题。 但是古典的 Kaczmarz 法对相邻方程式的相互关系十分敏感。 为了减少相关关系对趋同率的影响,分别提出了随机卡茨马尔兹法和卡茨马兹区块块法。 在目前的文献中,这些方法的误差估计结果是根据一个错误($x_k-x%2$)确定的, 美元是线性系统($Ax= b$)的解决方法。 在本文中,我们根据库尼奥·塔纳贝的趋同论,扩展了卡茨马尔兹目前对卡茨的误差估计和随机化卡茨马兹方法,并获得关于差错($x_k-P ⁇ N(A}x_0-xdagger)2美元的一些一般结果。