Obtaining accurate high-resolution representations of model outputs is essential to describe the system dynamics. In general, however, only spatially- and temporally-coarse observations of the system states are available. These observations can also be corrupted by noise. Downscaling is a process/scheme in which one uses coarse scale observations to reconstruct the high-resolution solution of the system states. Continuous Data Assimilation (CDA) is a recently introduced downscaling algorithm that constructs an increasingly accurate representation of the system states by continuously nudging the large scales using the coarse observations. We introduce a Discrete Data Assimilation (DDA) algorithm as a downscaling algorithm based on CDA with discrete-in-time nudging. We then investigate the performance of the CDA and DDA algorithms for downscaling noisy observations of the Rayleigh-B\'enard convection system in the chaotic regime. In this computational study, a set of noisy observations was generated by perturbing a reference solution with Gaussian noise before downscaling them. The downscaled fields are then assessed using various error- and ensemble-based skill scores. The CDA solution was shown to converge towards the reference solution faster than that of DDA but at the cost of a higher asymptotic error. The numerical results also suggest a quadratic relationship between the $\ell_2$ error and the noise level for both CDA and DDA. Cubic and quadratic dependences of the DDA and CDA expected errors on the spatial resolution of the observations were obtained, respectively.


翻译:获取模型输出的准确高分辨率表示对于描述系统动态至关重要。 但是, 一般来说, 只能提供系统状态的空间和时间上粗略的观测。 这些观测也可能被噪音破坏。 降尺度是一个过程/ 方法, 使用粗略的尺度观测来重建系统状态的高分辨率解决方案。 连续数据缩进( CDA) 是最近引入的下尺度算法, 通过使用粗糙的观测不断加固大比例度来显示系统状态的准确度。 我们引入了一种分层数据缩进( DAD)算法, 以基于 CDA 的降尺度算法为基础, 且有离散的时标。 然后我们用粗略的尺度观测法来调查CDA 和 DADA 的演算法, 在混乱制度中, 连续数据缩进式对系统进行调低调。 在计算研究中, 以高调调调调之前, 将数据缩放数据缩放( DDA) 算法作为降的缩缩放算法, 在CD 解算法中, 的解算中, 和 递进的解算法的解算法显示, CD 的解算法, 的解算法是各种的缩到 。 的解算法, 的解算法是, 的缩到的解算法, 的解算的解算法, 的解算为CD 的解到的解到的解到的解到的解到的解到的解到的解到的解到的解到的解到的解算。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Waveform inversion via reduced order modeling
Arxiv
0+阅读 · 2022年12月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员