Recently, graph-based algorithms have drawn much attention because of their impressive success in semi-supervised setups. For better model performance, previous studies learn to transform the topology of the input graph. However, these works only focus on optimizing the original nodes and edges, leaving the direction of augmenting existing data unexplored. In this paper, by simulating the generation process of graph signals, we propose a novel heuristic pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph. Substantially enlarging the original training set with high-quality generated labeled data, our framework can effectively benefit downstream models. To justify the generality and practicality of ELCO, we couple it with the popular Graph Convolution Network and Graph Attention Network to perform extensive evaluations on three standard datasets. In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art. We release our code and data on https://github.com/RingBDStack/ELCO to guarantee reproducibility.


翻译:最近,基于图形的算法因其在半监督的设置中取得令人印象深刻的成功而引起人们的极大注意。为了改进模型性能,以前的研究学会了转换输入图的表层学。然而,这些研究只侧重于优化原有节点和边缘,使现有数据未探索的扩展方向得以保持。在本文中,我们通过模拟图形信号的生成过程,提出了一种新的超常预处理技术,即ELELCO(ELCO),它自动扩大新的节点和边缘,以在密集的子集中改进标签相似性。大幅度扩大原始培训集,使用高质量的标签数据,我们的框架可以有效地有益于下游模型。为了证明ELCO的普遍性和实用性,我们将它与流行的图象变迁网络和图解注意网络结合起来,以便对三个标准数据集进行广泛的评估。在所有测试的设置中,我们的方法将基础模型的平均分数提高4.7个百分点,并不断超越R型状态。我们发布了我们的代码和数据在 https://CO/Bubsurviilable上进行重新研究。

0
下载
关闭预览

相关内容

【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
147+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
8+阅读 · 2018年10月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2020年11月19日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
11+阅读 · 2018年7月8日
Arxiv
3+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
8+阅读 · 2018年10月31日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员