The Work Disability Functional Assessment Battery (WD-FAB) is a multidimensional item response theory (IRT) instrument designed for assessing work-related mental and physical function based on responses to an item bank. In prior iterations it was developed using traditional means -- linear factorization, followed by statistical testing for item selection, and finally, calibration of disjoint unidimensional IRT models. As a result, the WD-FAB, like many other IRT instruments, is a posthoc model. In this manuscript, we derive an interpretable probabilistic autoencoder architecture that embeds as the decoder a Bayesian hierarchical model for self-consistently performing the following simultaneous tasks: scale factorization, item selection, parameter identification, and response scoring. This method obviates the linear factorization and null hypothesis statistical tests that are usually required for developing multidimensional IRT models, so that partitioning is consistent with the ultimate nonlinear factor model. We use the method on WD-FAB item responses and compare the resulting item discriminations to those obtained using the traditional method.
翻译:残疾功能评估电池(WD-FAB)是一个多层面的物品反应理论(IRT)工具,旨在根据对物品库的反应来评估与工作有关的心理和身体功能。在以前,它使用传统手段 -- -- 线性因数化,然后对物品选择进行统计测试,最后校准单维的残疾功能评估电池(WD-FAB)模型。因此,WD-FAB与其他许多国际康复评估仪器一样,是一个后光学模型。在这个手稿中,我们得出一个可解释的概率性自动编码器结构,作为一种贝耶斯等级模型,用于自动一致地执行下列同时执行的任务:比例因数化、项目选择、参数识别和响应评分。这种方法避免了为开发多层面的IRT模型通常需要的线性因数化和无效假设统计测试,因此分解与最终的非线性要素模型相一致。我们使用关于WD-FAB项目反应的方法,并将由此产生的物品歧视与使用传统方法取得的数据进行比较。