Over the several recent years, there has been a boom in development of flow matching methods for generative modeling. One intriguing property pursued by the community is the ability to learn flows with straight trajectories which realize the optimal transport (OT) displacements. Straightness is crucial for fast integration of the learned flow's paths. Unfortunately, most existing flow straightening methods are based on non-trivial iterative procedures which accumulate the error during training or exploit heuristic minibatch OT approximations. To address this issue, we develop a novel optimal flow matching approach which recovers the straight OT displacement for the quadratic cost in just one flow matching step.
翻译:暂无翻译