Recent 2D-to-3D human pose estimation works tend to utilize the graph structure formed by the topology of the human skeleton. However, we argue that this skeletal topology is too sparse to reflect the body structure and suffer from serious 2D-to-3D ambiguity problem. To overcome these weaknesses, we propose a novel graph convolution network architecture, Hierarchical Graph Networks (HGN). It is based on denser graph topology generated by our multi-scale graph structure building strategy, thus providing more delicate geometric information. The proposed architecture contains three sparse-to-fine representation subnetworks organized in parallel, in which multi-scale graph-structured features are processed and exchange information through a novel feature fusion strategy, leading to rich hierarchical representations. We also introduce a 3D coarse mesh constraint to further boost detail-related feature learning. Extensive experiments demonstrate that our HGN achieves the state-of-the art performance with reduced network parameters


翻译:最近2D到3D人类表面估计工程往往使用由人类骨骼的表层构成的图表结构。 然而,我们认为,这一骨骼结构过于稀少,无法反映人体结构,并且存在严重的2D到3D模糊问题。为了克服这些弱点,我们提议建立一个新的图形变形网络结构,即高层次图图图网络。它基于我们多尺度图结构结构构建战略产生的密度图形表层,从而提供更微妙的几何信息。拟议的结构包括三个平行组织的稀疏到纤维代表子网络,其中处理多尺度图结构特征,并通过新颖的特征融合战略交流信息,导致丰富的等级代表性。我们还引入了3D粗微网块限制,以进一步推动与细节有关的特征学习。广泛的实验表明,我们的图组在网络参数减少的情况下实现了艺术状态。

0
下载
关闭预览

相关内容

【2021新书】高阶网络,150页pdf,Higher-Order Networks
专知会员服务
87+阅读 · 2021年11月26日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
37+阅读 · 2020年11月24日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
27+阅读 · 2020年12月24日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员