Emotional Reaction Intensity(ERI) estimation is an important task in multimodal scenarios, and has fundamental applications in medicine, safe driving and other fields. In this paper, we propose a solution to the ERI challenge of the fifth Affective Behavior Analysis in-the-wild(ABAW), a dual-branch based multi-output regression model. The spatial attention is used to better extract visual features, and the Mel-Frequency Cepstral Coefficients technology extracts acoustic features, and a method named modality dropout is added to fusion multimodal features. Our method achieves excellent results on the official validation set.
翻译:情感反应强度估算是多式联运情景中的一项重要任务,具有医学、安全驾驶和其他领域的基本应用。在本文中,我们提出了解决第五期“双部门多输出回归模型”即“虚拟的情感行为分析”挑战的解决方案。空间关注被用于更好地提取视觉特征,而梅尔-平方Cepstravals技术提取了声学特征,而名为模式退出的方法被添加到聚合多式联运特征中。我们的方法在正式验证集中取得了极佳的成果。</s>