Localization Quality Estimation (LQE) is crucial and popular in the recent advancement of dense object detectors since it can provide accurate ranking scores that benefit the Non-Maximum Suppression processing and improve detection performance. As a common practice, most existing methods predict LQE scores through vanilla convolutional features shared with object classification or bounding box regression. In this paper, we explore a completely novel and different perspective to perform LQE -- based on the learned distributions of the four parameters of the bounding box. The bounding box distributions are inspired and introduced as "General Distribution" in GFLV1, which describes the uncertainty of the predicted bounding boxes well. Such a property makes the distribution statistics of a bounding box highly correlated to its real localization quality. Specifically, a bounding box distribution with a sharp peak usually corresponds to high localization quality, and vice versa. By leveraging the close correlation between distribution statistics and the real localization quality, we develop a considerably lightweight Distribution-Guided Quality Predictor (DGQP) for reliable LQE based on GFLV1, thus producing GFLV2. To our best knowledge, it is the first attempt in object detection to use a highly relevant, statistical representation to facilitate LQE. Extensive experiments demonstrate the effectiveness of our method. Notably, GFLV2 (ResNet-101) achieves 46.2 AP at 14.6 FPS, surpassing the previous state-of-the-art ATSS baseline (43.6 AP at 14.6 FPS) by absolute 2.6 AP on COCO {\tt test-dev}, without sacrificing the efficiency both in training and inference. Code will be available at https://github.com/implus/GFocalV2.


翻译:46. 本地化质量估计(LQE)对于最近密集天体探测器的进步至关重要,也很受欢迎,因为它能够提供准确的排名分数,有利于非最高限值处理和改进检测性能。作为常见做法,大多数现有方法通过与目标分类或捆绑框回归共享的香草卷变相特征预测LQE分数。在本文件中,我们探索了一个全新的和不同的视角来实施LQE -- -- 其依据是捆绑框的四个参数的学术分布。捆绑箱的分发被启发并被引入为GFLV1中的“通用分布”,它描述了预测的捆绑盒的不确定性。这种属性使得一个捆绑盒的分发统计数据与其真实的本地化质量密切相关。具体地说,一个最高峰的捆绑盒分布通常与高的本地化质量相对反。通过利用分发统计数据与实际本地化质量之间的密切关联,我们开发了一个相当轻的分发-Guid质量预测(DGQQQP),用于基于GFLV1的可靠 LQE, 绝对值显示预测性包装箱的不确定性的不确定性。因此,在GFLVS-V2 测试中使用了我们之前的测试方法。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
3+阅读 · 2018年6月14日
VIP会员
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】深度学习的数学解释
机器学习研究会
10+阅读 · 2017年12月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员