In recent years, the growing demand for more intelligent service robots is pushing the development of mobile robot navigation algorithms to allow safe and efficient operation in a dense crowd. Reinforcement learning (RL) approaches have shown superior ability in solving sequential decision making problems, and recent work has explored its potential to learn navigation polices in a socially compliant manner. However, the expert demonstration data used in existing methods is usually expensive and difficult to obtain. In this work, we consider the task of training an RL agent without employing the demonstration data, to achieve efficient and collision-free navigation in a crowded environment. To address the sparse reward navigation problem, we propose to incorporate the hindsight experience replay (HER) and curriculum learning (CL) techniques with RL to efficiently learn the optimal navigation policy in the dense crowd. The effectiveness of our method is validated in a simulated crowd-robot coexisting environment. The results demonstrate that our method can effectively learn human-aware navigation without requiring additional demonstration data.


翻译:近年来,对智能型机器人日益增长的需求正在推动发展移动式机器人导航算法,以便能够在密集人群中安全高效地运行。强化学习方法在解决连续决策问题时表现出了超强的能力。强化学习方法在解决连续决策问题时表现出了超强的能力,最近的工作探索了以社会兼容的方式学习导航政策的潜力。然而,在现行方法中使用的专家示范数据通常成本高昂,而且难以获得。在这项工作中,我们认为在不使用演示数据的情况下培训RL代理,以便在拥挤环境中实现高效和无碰撞的导航。为了解决微薄的奖励导航问题,我们提议与RL结合后视再玩(HER)和课程学习(CL)技术,以便在密集人群中有效学习最佳导航政策。我们的方法的有效性在模拟的人群机器人共存环境中得到验证。结果表明,我们的方法可以有效地学习人觉导航,而无需额外的演示数据。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
116+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年11月14日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年10月8日
Arxiv
3+阅读 · 2018年10月5日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员