Recent work has shown that the error of Monte-Carlo rendering is visually more acceptable when distributed as blue-noise in screen-space. Despite recent efforts, building a screen-space sampler is still an open problem. In this talk, we present the lessons we learned while improving our previous screen-space sampler. Specifically: we advocate for a new criterion to assess the quality of such samplers; we introduce a new screen-space sampler based on rank-1 lattices; we provide a parallel optimization method that is compatible with a GPU implementation and that achieves better quality; we detail the pitfalls of using such samplers in renderers and how to cope with many dimensions; and we provide empirical proofs of the versatility of the optimization process.
翻译:最近的工作表明,Monte-Carlo投影的错误在作为屏幕空间的蓝噪音进行分布时,更能让人看得见。尽管最近做出了努力,但建立一个屏幕-空间取样器仍然是一个尚未解决的问题。在这次演讲中,我们介绍了我们在改进先前的屏幕-空间取样器时吸取的经验教训。具体地说:我们主张采用新的标准来评估这些取样器的质量;我们采用了一个新的屏幕-空间取样器,其标准是一级级至层;我们提供了一种平行的优化方法,该方法与GPU的安装相兼容,而且质量更高;我们详细介绍了在投影器中使用这些取样器的缺陷以及如何应对许多维度;我们提供了关于优化过程多功能的经验证明。