We present DEEPDECS, a new method for the synthesis of correct-by-construction discrete-event controllers for autonomous systems that use deep neural network (DNN) classifiers for the perception step of their decision-making processes. Despite major advances in deep learning in recent years, providing safety guarantees for these systems remains very challenging. Our controller synthesis method addresses this challenge by integrating DNN verification with the synthesis of verified Markov models. The synthesised models correspond to discrete-event controllers guaranteed to satisfy the safety, dependability and performance requirements of the autonomous system, and to be Pareto optimal with respect to a set of optimisation criteria. We use the method in simulation to synthesise controllers for mobile-robot collision avoidance, and for maintaining driver attentiveness in shared-control autonomous driving.
翻译:我们提出了DEEPDECS,这是一套新的方法,用于对使用深神经网络分类器的自主系统进行校正独立事件控制器的合成,这种系统使用深神经网络分类器来进行感知决策步骤。尽管近年来在深入学习方面取得了重大进展,但为这些系统提供安全保障仍然是非常困难的。我们的控制器合成方法通过将DNN核查与经核实的Markov模型的合成结合起来来应对这一挑战。综合模型相当于保证独立事件控制器满足自主系统的安全、可靠性和性能要求,并且对于一套优化标准来说是最佳的。我们在模拟合成控制器时使用了这种方法,用于避免移动机器人碰撞,并在共同控制自主驾驶中保持驾驶员的注意。