Due to the no-cloning theorem, generating perfect quantum clones of an arbitrary quantum state is not possible, however approximate quantum clones can be constructed. Quantum telecloning is a protocol that originates from a combination of quantum teleportation and quantum cloning. Here we present $1 \rightarrow 2$ and $1 \rightarrow 3$ quantum telecloning circuits, with and without ancilla, that are theoretically optimal (meaning the clones are the highest fidelity allowed by quantum mechanics), universal (meaning the clone fidelity is independent of the state being cloned), and symmetric (meaning the clones all have the same fidelity). We implement these circuits on gate model IBMQ and Quantinuum NISQ hardware and quantify the clone fidelities using parallel single qubit state tomography. Quantum telecloning using mid-circuit measurement with real time if statements is demonstrated on the Quantinuum H1-2 device. Two alternative implementations of quantum telecloning (deferred measurement and post selection) are demonstrated on ibmq\_montreal for cases where mid-circuit measurement with real time if statements are not available. Our results show that NISQ devices can achieve near-optimal quantum telecloning fidelity; for example the Quantinuum H1-2 device running the telecloning circuits without ancilla achieved a mean clone fidelity of $0.824$ for two clone circuits and $0.765$ for three clone circuits (the theoretical fidelity limits are $0.8\bar{33}$ for two clones and $0.\bar{77}$ for three clones). This demonstrates the viability of performing experimental analysis of quantum information networks and quantum cryptography protocols on NISQ computers.


翻译:由于没有克隆的理论, 生成任意量子状态的完美量子克隆是不可能的, 但是仍然不可能创建近似量子克隆。 量子流转和量子克隆的结合, 量子流转和量子克隆是一个协议。 这里我们提供了1美元\rightrow 2美元和1\rightrow 3美元量子流转电路, 使用或不使用 ancilla, 理论上最理想的( 意味着克隆是量子力力学允许的最高忠诚度 ) 普遍化( 意味着克隆的忠诚度独立于正在克隆的国家 ) 量子流转。 量子流转的精确性 QQQ, 意味着克隆人都有相同的忠度。 我们在IBMQ 和Qualtinum NISQ硬件中安装了这些电路路路路路, 使用平行的单子色子线电解算法, 使用中间电路路测量法, 如果在量子量力学中演示了 Qral- Qal- 2x 的直径直径测量和后选的直径直径直径直径解结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月20日
Arxiv
0+阅读 · 2022年6月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员