Deformable object manipulation has many applications such as cooking and laundry folding in our daily lives. Manipulating elastoplastic objects such as dough is particularly challenging because dough lacks a compact state representation and requires contact-rich interactions. We consider the task of flattening a piece of dough into a specific shape from RGB-D images. While the task is seemingly intuitive for humans, there exist local optima for common approaches such as naive trajectory optimization. We propose a novel trajectory optimizer that optimizes through a differentiable "reset" module, transforming a single-stage, fixed-initialization trajectory into a multistage, multi-initialization trajectory where all stages are optimized jointly. We then train a closed-loop policy on the demonstrations generated by our trajectory optimizer. Our policy receives partial point clouds as input, allowing ease of transfer from simulation to the real world. We show that our policy can perform real-world dough manipulation, flattening a ball of dough into a target shape.
翻译:变形物体操纵有许多应用, 比如烹饪和洗衣折叠在我们日常生活中。 调控像面团这样的无弹性物体尤其具有挑战性, 因为面团缺乏紧凑的状态代表, 并且需要接触丰富的互动 。 我们考虑将一块面团从 RGB- D 图像中平整成一个特定形状的任务 。 虽然这项任务对于人类来说似乎是不切实际的, 但对于天真的轨迹优化等共同方法, 当地存在选择。 我们提议了一个新颖的轨迹优化器, 通过一个不同的“ 重置” 模块优化, 将一个单级的固定初始化轨迹转换成一个多级的多级、 多级初始化轨迹, 使所有阶段都得到优化 。 我们随后就轨迹优化产生的演示制定了一个闭路政策 。 我们的政策接收部分点云作为输入, 方便从模拟向真实世界转移。 我们显示我们的政策可以执行真实的面面团操纵, 将一个面团的球固定成目标形状 。