Recently, Meta AI Research approaches a general, promptable Segment Anything Model (SAM) pre-trained on an unprecedentedly large segmentation dataset (SA-1B). Without a double, the emergence of SAM will yield significant benefits for a wide array of practical image segmentation applications. In this study, we conduct a series of intriguing investigations into the performance of SAM across various applications, particularly in the fields of natural images, agriculture, manufacturing, remote sensing, and healthcare. We analyze and discuss the benefits and limitations of SAM and provide an outlook on future development of segmentation tasks. Note that our work does not intend to propose new algorithms or theories, but rather provide a comprehensive view of SAM in practice. This work is expected to provide insights that facilitate future research activities toward generic segmentation.
翻译:最近,Meta AI Research 提出了一种通用、可促进的Segment Anything Model (SAM),它是在前所未有的巨大分割数据集(SA-1B)上预训练的。毫无疑问,SAM 的出现将为各种实际图像分割应用带来显著的好处。在本研究中,我们对 SAM 在各种应用环境下的性能进行了一系列有趣的调查,特别是在自然图像、农业、制造业、遥感和医疗保健领域。我们分析和讨论了 SAM 的优点和局限性,并展望了未来分割任务的发展。请注意,我们的工作并不打算提出新的算法或理论,而是提供对 SAM 实践的全面视角。我们期望这项工作能够提供有助于未来通用分割研究活动的见解。