This study presents a topology optimization scheme for realizing a bound state in the continuum along an open acoustic waveguide comprising a periodic array of elastic materials. First, we formulate the periodic problem as a system of linear algebraic equations using a scattering matrix associated with a single unit structure of the waveguide. The scattering matrix is numerically constructed using the boundary element method. Subsequently, we employ the Sakurai--Sugiura method to determine resonant frequencies and the Floquet wavenumbers by solving a nonlinear eigenvalue problem for the linear system. We design the shape and topology of the unit elastic material such that the periodic structure has a real resonant wavenumber at a given frequency by minimizing the imaginary part of the resonant wavenumber. The proposed topology optimization scheme is based on a level-set method with a novel topological derivative. We demonstrate a numerical example of the proposed topology optimization and show that it realizes a bound state in the continuum through some numerical experiments.
翻译:本研究提出了在开放声波制导(由一系列定期弹性材料组成的声波制导)的连续体中实现约束状态的地形优化方案。 首先,我们用与波导单单元结构相关的散射矩阵将周期问题作为线性代数方程式系统形成。 散射矩阵是使用边界元素法进行数字构造的。 随后,我们采用Sakurai- Sugiura 方法,通过解决线性系统的非线性弹性值问题来确定共振频率和Floquet波数。 我们设计了单元弹性材料的形状和表层学,使周期结构在一定频率上有一个真实的共振波数,通过最小化共振波数符号的想象部分。 拟议的表层优化方案基于一种定级方法,用新式的表层衍生物来测定。 我们展示了拟议的表层优化的数字示例,并显示它通过一些数字实验在连续体中实现约束状态。