We consider the Bin Packing problem with a partition matroid constraint. The input is a set of items of sizes in $(0,1]$, and a partition matroid over the items. The goal is to pack all items in a minimum number of unit-size bins, such that each bin forms an independent set in the matroid. The problem is a generalization of both Group Bin Packing and Bin Packing with Cardinality Constraints. Bin Packing with Partition Matroid naturally arises in resource allocation to ensure fault tolerance and security, as well as in harvesting computing capacity. Our main result is a polynomial-time algorithm that packs the items in $OPT + o(OPT)$ bins, where OPT is the minimum number of bins required for packing the given instance. This matches the best known result for the classic Bin Packing problem up to the function hidden by o(OPT). As special cases, our result improves upon the existing APTAS for Group Bin Packing and generalizes the AFTPAS for Bin Packing with Cardinality Constraints. Our approach is based on rounding a solution for a configuration-LP formulation of the problem. The rounding takes a novel point of view of prototypes in which items are interpreted as placeholders for other items and applies fractional grouping to modify a fractional solution (prototype) into one having nice integrality properties.
翻译:暂无翻译