We propose quasi-stable coloring, an approximate version of stable coloring. Stable coloring, also called color refinement, is a well-studied technique in graph theory for classifying vertices, which can be used to build compact, lossless representations of graphs. However, its usefulness is limited due to its reliance on strict symmetries. Real data compresses very poorly using color refinement. We propose the first, to our knowledge, approximate color refinement scheme, which we call quasi-stable coloring. By using approximation, we alleviate the need for strict symmetry, and allow for a tradeoff between the degree of compression and the accuracy of the representation. We study three applications: Linear Programming, Max-Flow, and Betweenness Centrality, and provide theoretical evidence in each case that a quasi-stable coloring can lead to good approximations on the reduced graph. Next, we consider how to compute a maximal quasi-stable coloring: we prove that, in general, this problem is NP-hard, and propose a simple, yet effective algorithm based on heuristics. Finally, we evaluate experimentally the quasi-stable coloring technique on several real graphs and applications, comparing with prior approximation techniques. A reference implementation and the experiment code are available at https://github.com/mkyl/QuasiStableColors.jl .
翻译:我们提出准稳定色素, 一种近似稳定的色彩配色。 稳定色素, 也称为色彩精细, 是用于分解脊椎的图表理论中一项研究周密的技术, 可用于分类脊椎的图形理论, 可用于构建紧凑的、 无损的图表表示。 但是, 其实用性有限, 因为它依赖严格的对称性。 真正的数据压缩使用色彩精度非常差。 我们提出第一个方案, 根据我们的知识, 近似色调色化方案, 我们称之为准色调色。 我们通过使用近似, 减轻严格对称的需要, 并允许在压缩程度和代表的准确性之间进行权衡。 我们研究三种应用: 线性程序、 Max- Flow 和 间距中心性图案, 并在每种情况下提供理论证据, 准可导致对淡化的图表进行良好的近似化。 接下来, 我们考虑如何编译一种最高准的准度准色谱的颜色配色谱。 我们证明, 一般来说, 这个问题是硬的, 我们提出一个简单有效的算法, 但有效的运算法则基于 Heurist Qal Q; 最后, 我们评估了前的Gal- colalalalalalalal- viewalalalvical view, 我们评估了 和 viewalviewalviewal est viewalviews viewds