The surrogate loss of variational autoencoders (VAEs) poses various challenges to their training, inducing the imbalance between task fitting and representation inference. To avert this, the existing strategies for VAEs focus on adjusting the tradeoff by introducing hyperparameters, deriving a tighter bound under some mild assumptions, or decomposing the loss components per certain neural settings. VAEs still suffer from uncertain tradeoff learning.We propose a novel evolutionary variational autoencoder (eVAE) building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm into VAE with variational evolutionary operators including variational mutation, crossover, and evolution. Its inner-outer-joint training mechanism synergistically and dynamically generates and updates the uncertain tradeoff learning in the evidence lower bound (ELBO) without additional constraints. Apart from learning a lossy compression and representation of data under the VIB assumption, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and deep neural networks and addresses the premature convergence and random search problem by integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all disentangled factors with sharp images, and improves the image generation quality,respectively. eVAE achieves better reconstruction loss, disentanglement, and generation-inference balance than its competitors.
翻译:变异自动电解码器(VAE)的代谢损失给其培训带来了各种挑战,导致任务配置和代表性推断之间的不平衡。为了避免这种情况,VAE的现有战略侧重于通过引入超光度计调整权衡,根据某些轻度假设形成更严格的约束,或将某些神经环境的损失部分分解为分解。VAE仍然受到不确定的权衡学习。我们提议在变异信息瓶颈(VIB)理论和综合进化神经学习的基础上建立新的进化变异自动coder(eVAE)理论和综合进化进化神经学习。 eVAE将变异基因算法与变异性演化操作者(包括变异性突变、交叉翻转和演演化 ) 相结合和动态联合培训机制生成并更新了证据较低约束(ELBO) 的变异性交易学习。除了了解VIB假设下的数据损失压缩和表述外,EVAE提出了一种进化模式,将VAE和深层神经网络的关键因素与深层次的变异性网络结合,并解决了变异性E的升级和随机性造造的图像问题,将所有变异性变异性变化和变造的造的造法问题整合和变式研究: 将所有的造法化的造法的造法化和变异性造法化、演化、演化、演化、演化、演化、演化的造法的造法的造法化、演化学的造法的造法的造法的造法的造法的造法的造能的造法的造法化、演化、演化和所有的造能的造能的造能的造能的造能的造法的造法的造能的造法的造能的造能的造能的造能的造能的造能的造能的造能、所有的造法的造法的造得以的造法的造法的造法的造法问题整合成得以的造法的造得以的造法的造能的造能的造能的造能、所有的造能的造法的造法的造得以的造得以的造得以的造得以的造得以的造得以所有的造得以的造得以的造与所有。