Language-Conditioned Robotic Grasping (LCRG) aims to develop robots that comprehend and grasp objects based on natural language instructions. While the ability to understand personal objects like my wallet facilitates more natural interaction with human users, current LCRG systems only allow generic language instructions, e.g., the black-colored wallet next to the laptop. To this end, we introduce a task scenario GraspMine alongside a novel dataset aimed at pinpointing and grasping personal objects given personal indicators via learning from a single human-robot interaction, rather than a large labeled dataset. Our proposed method, Personalized Grasping Agent (PGA), addresses GraspMine by leveraging the unlabeled image data of the user's environment, called Reminiscence. Specifically, PGA acquires personal object information by a user presenting a personal object with its associated indicator, followed by PGA inspecting the object by rotating it. Based on the acquired information, PGA pseudo-labels objects in the Reminiscence by our proposed label propagation algorithm. Harnessing the information acquired from the interactions and the pseudo-labeled objects in the Reminiscence, PGA adapts the object grounding model to grasp personal objects. This results in significant efficiency while previous LCRG systems rely on resource-intensive human annotations -- necessitating hundreds of labeled data to learn my wallet. Moreover, PGA outperforms baseline methods across all metrics and even shows comparable performance compared to the fully-supervised method, which learns from 9k annotated data samples. We further validate PGA's real-world applicability by employing a physical robot to execute GrsapMine. Code and data are publicly available at https://github.com/JHKim-snu/PGA.
翻译:暂无翻译