I compute the average trial-by-trial power of band-limited speech activity across epochs of multi-channel high-density electrocorticography (ECoG) recorded from multiple subjects during a consonant-vowel speaking task. I show that previously seen anti-correlations of average beta frequency activity (12-35 Hz) to high-frequency gamma activity (70-140 Hz) during speech movement are observable between individual ECoG channels in the sensorimotor cortex (SMC). With this I fit a variance-based model using principal component analysis to the band-powers of individual channels of session-averaged ECoG data in the SMC and project SMC channels onto their lower-dimensional principal components. Spatiotemporal relationships between speech-related activity and principal components are identified by correlating the principal components of both frequency bands to individual ECoG channels over time using windowed correlation. Correlations of principal component areas to sensorimotor areas reveal a distinct two-component activation-inhibition-like representation for speech that resembles distinct local sensorimotor areas recently shown to have complex interplay in whole-body motor control, inhibition, and posture. Notably the third principal component shows insignificant correlations across all subjects, suggesting two components of ECoG are sufficient to represent SMC activity during speech movement.
翻译:暂无翻译