In this paper, we develop a provably energy stable and conservative discontinuous spectral element method for the shifted wave equation in second order form. The proposed method combines the advantages and central ideas of very successful numerical techniques, the summation-by-parts finite difference method, the spectral method and the discontinuous Galerkin method. We prove energy-stability, discrete conservation principle, and derive error estimates in the energy norm for the (1+1)-dimensions shifted wave equation in second order form. The energy-stability results, discrete conservation principle, and the error estimates generalise to multiple dimensions using tensor products of quadrilateral and hexahedral elements. Numerical experiments, in (1+1)-dimensions and (2+1)-dimensions, verify the theoretical results and demonstrate optimal convergence of $L^2$ numerical errors at subsonic, sonic and supersonic regimes.
翻译:在本文中,我们为以第二顺序形式变化的波形方程式开发了一种可辨别的能源稳定和保守的不连续光谱元件方法。提议的方法结合了非常成功的数字技术的优点和中心想法,即按部和部进行对比的差别法、光谱法和不连续的加列金法。我们证明能源稳定、离散保护原则,并在能源规范中得出(1+1)-二元转换波形为第二顺序的差错估计值。能量稳定性结果、离散保护原则以及错误估计利用四边元素和六环元素的强压产品将光谱化为多个维度。数字实验(1+1)-二倍和(2+1)-二元,核实理论结果,并证明在亚声、声学和超声学系统中将$L%2美元的数字差进行最佳组合。