Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton-proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.
翻译:Tensor Networks是最初设计用于模拟量子多体系统的一个数字工具,最近被用于解决机器学习问题。我们利用树高网络,对高能量物理学中一个非常重要和具有挑战性的大数据问题应用量子驱动机学习技术:对欧洲核子研究中心大型哈德龙相撞机产生的数据进行分析和分类。特别是,我们介绍了如何有效分类所谓的b-jet、LHCb实验中来自质子-质子碰撞的b-quark喷气机,以及如何解释分类结果。我们利用Tensor网络方法选择重要特征,并根据学习过程中获得的信息对网络的几何方法进行调整。最后,我们展示了如何调整树高能网络,以便在不需要重复学习过程的情况下实现最佳精确或快速反应。这些结果为实施高频实时应用铺平铺平了道路,这是当前和今后LHCb事件分类中能够触发XMz级事件的关键成分。