The overdraw problem of scatterplots seriously interferes with the visual tasks. Existing methods, such as data sampling, node dispersion, subspace mapping, and visual abstraction, cannot guarantee the correspondence and consistency between the data points that reflect the intrinsic original data distribution and the corresponding visual units that reveal the presented data distribution, thus failing to obtain an overlap-free scatterplot with unbiased and lossless data distribution. A dual space coupling model is proposed in this paper to represent the complex bilateral relationship between data space and visual space theoretically and analytically. Under the guidance of the model, an overlap-free scatterplot method is developed through integration of the following: a geometry-based data transformation algorithm, namely DistributionTranscriptor; an efficient spatial mutual exclusion guided view transformation algorithm, namely PolarPacking; an overlap-free oriented visual encoding configuration model and a radius adjustment tool, namely $f_{r_{draw}}$. Our method can ensure complete and accurate information transfer between the two spaces, maintaining consistency between the newly created scatterplot and the original data distribution on global and local features. Quantitative evaluation proves our remarkable progress on computational efficiency compared with the state-of-the-art methods. Three applications involving pattern enhancement, interaction improvement, and overdraw mitigation of trajectory visualization demonstrate the broad prospects of our method.
翻译:散射偏差问题严重干扰了视觉任务。现有的方法,如数据取样、节点分散、子空间映射和视觉抽象等,不能保证反映原始数据内在分布的数据点与显示数据分布的相应直观单位之间的对应性和一致性,从而无法获得一个不带偏见和无损数据分布的无重叠散射点。本文件提出了一个双重空间混合模型,以代表数据空间与视觉空间在理论上和分析上之间的复杂双边关系。在模型的指导下,通过整合以下方法开发出一种无重叠散射法:基于几何的数据转换算法,即分布图描述器;高效的空间相互排斥引导的视图转换算法,即极地包件;一个面向重叠的视觉编码模型和一个半径调整工具,即$f ⁇ r ⁇ draw ⁇ $。我们的方法可以确保两个空间之间完整和准确的信息传输,保持新创建的散射图与全球和地方特征原始数据分布的一致性。定量评估证明了我们在计算效率方面所取得的显著进展,即分布式分析模型,并展示了我们关于宽度改进的视觉改进的三轨迹方法。