Neural networks embed the geometric structure of a data manifold lying in a high-dimensional space into latent representations. Ideally, the distribution of the data points in the latent space should depend only on the task, the data, the loss, and other architecture-specific constraints. However, factors such as the random weights initialization, training hyperparameters, or other sources of randomness in the training phase may induce incoherent latent spaces that hinder any form of reuse. Nevertheless, we empirically observe that, under the same data and modeling choices, distinct latent spaces typically differ by an unknown quasi-isometric transformation: that is, in each space, the distances between the encodings do not change. In this work, we propose to adopt pairwise similarities as an alternative data representation, that can be used to enforce the desired invariance without any additional training. We show how neural architectures can leverage these relative representations to guarantee, in practice, latent isometry invariance, effectively enabling latent space communication: from zero-shot model stitching to latent space comparison between diverse settings. We extensively validate the generalization capability of our approach on different datasets, spanning various modalities (images, text, graphs), tasks (e.g., classification, reconstruction) and architectures (e.g., CNNs, GCNs, transformers).
翻译:理想的是,潜在空间中数据点的分布应只取决于任务、数据、损失和其他特定结构的限制。但是,随机权重初始化、培训超参数或培训阶段中的其他随机来源等因素,可能会诱使阻碍任何再利用形式的不相容潜在空间。然而,我们从经验中观察到,在相同的数据和模型选择下,不同的潜在空间通常因未知的准对称变异而不同:即在每一个空间,编码之间的距离不会改变。在这项工作中,我们提议采用对称相似性作为替代数据代表,可以用来在没有任何额外培训的情况下执行理想的变异性。我们表明,神经结构如何利用这些相对的表达来在实践中保证潜伏的不均匀性,从而有效地使潜伏空间通信从零发模型缝合到不同环境之间的潜伏空间比较。我们广泛验证了我们在不同数据设置、变异性结构(图表、变异性结构、变异性结构、图表、变异性结构、图表、变异性结构)上的方法(图表、变异性结构、图形、变异性结构、图、G型结构)。